Affiliation:
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
Abstract
An experimental study is conducted to investigate the effects of different operating parameters on the performance of liquid–gas jet pumps. A square nozzle with an area ratio of 2.25 is designed for the liquid–gas jet pump, and an experimental setup for the liquid–gas jet pump system is constructed. By varying parameters such as inlet flow rate, temperature, and inlet pressure, the variations in the pumping capacity and pumping ratio of the system are studied. The performance of liquid–gas jet pumps with square nozzles and traditional circular nozzles under the same working conditions was compared through experimental data. Explore the performance advantages and disadvantages of liquid–gas jet pumps with different shaped nozzles under the same working conditions. The experimental results indicate that as the inlet flow rate of the liquid–gas jet pump increases, the pumping capacity of the system increases, leading to an increase in the pumping ratio. The operational efficiency slightly decreases with a rise in the working water flow rate. The pumping ratio of the system increases with an increase in the inlet pressure, reaching a peak value of around 4.0 when the inlet valve is fully open. Inlet pressure significantly affects the efficiency of the liquid–gas jet pump, with the highest efficiency point achieved at Pa (inlet air pressure) = 60 kPa, reaching an operational efficiency of 42.48%. When Pa exceeds 70 kPa, the operational efficiency rapidly declines. Comparing the performance of square and circular nozzle liquid–gas jet pumps under the same operating conditions, the performance of the square nozzle liquid–gas jet pump outperforms that of the circular nozzle counterpart. The pumping system’s performance decreases continuously with an increase in the working liquid temperature; however, the decline in pumping performance becomes gradual after exceeding 40 °C. As the water level rises, both the pumping capacity and pumping ratio of the system increase. After the liquid level reaches 40 cm, the changes in the pumping system’s performance become less pronounced.
Funder
Zhejiang Provincial Science and Technology Plan Project of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference24 articles.
1. Current Situation and Prospect of Jet Pumps;Wu;J. Drain. Irrig. Mach. Eng.,2007
2. The performance and modeling of liquid jet gas pumps;Neve;Int. J. Heat Fluid Flow,1988
3. Experimental investigations on a two-phase jet pump used in desalination systems;Kumar;Desalination,2007
4. Witte, J.H. (1962). Mixing Shocks and Their Influence on the Design of Liquid–Gas Ejectors. [Ph.D. Thesis, Delft University].
5. Betzler, R.L. (1969). The Liquid–Gas Jet Pump Analysis and Experimental Results. [Ph.D. Thesis, Pennsylvania State University].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献