Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks

Author:

Song Bingkun1ORCID,Madawala Udaya K.1,Baguley Craig A.2

Affiliation:

1. Department of Electrical, Computer and Software Engineering, Faculty of Engineering, The University of Auckland, Auckland 1023, New Zealand

2. Department of Electrical and Electronic Engineering, School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland 1142, New Zealand

Abstract

A conventional electric vehicle charger (EVC) charges only one EV concurrently. This leads to underutilization whenever the charging power is less than the EVC-rated capacity. Consequently, the cost-effectiveness of conventional EVCs is limited. Reconfigurable EVCs (REVCs) are a new technology that overcomes underutilization by allowing multiple EVs to be charged concurrently. This brings a cost-effective charging solution, especially in large car parks requiring numerous chargers. Therefore, this paper proposes an optimal planning strategy for car parks deploying REVCs. The proposed planning strategy involves three stages. An optimization model is developed for each stage of the proposed planning strategy. The first stage determines the optimal power rating of power modules inside each REVC, and the second stage determines the optimal number and configuration of REVCs, followed by determining the optimal operation plan for EV car parks in the third stage. To demonstrate the effectiveness of the proposed optimal planning strategy, a comprehensive case study is undertaken using realistic car parking scenarios with 400 parking spaces, electricity tariffs, and grid infrastructure costs. Compared to deploying other conventional EVCs, the results convincingly indicate that the proposed optimal planning strategy significantly reduces the total cost of investment and operation while satisfying charging demands.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3