Abstract
Manufacturers today compete to offer not only products, but products accompanied by services, which are referred to as product-service systems (PSSs). PSS mass customization is defined as the production of products and services to meet the needs of individual customers with near-mass-production efficiency. In the context of the PSS mass customization environment, customers are overwhelmed by a plethora of previously customized PSS variants. As a result, finding a PSS variant that is precisely aligned with the customer’s needs is a cognitive task that customers will be unable to manage effectively. In this paper, we propose a hybrid knowledge-based recommender system that assists customers in selecting previously customized PSS variants from a wide range of available ones. The recommender system (RS) utilizes ontologies for capturing customer requirements, as well as product-service and production-related knowledge. The RS follows a hybrid recommendation approach, in which the problem of selecting previously customized PSS variants is encoded as a constraint satisfaction problem (CSP), to filter out PSS variants that do not satisfy customer needs, and then uses a weighted utility function to rank the remaining PSS variants. Finally, the RS offers a list of ranked PSS variants that can be scrutinized by the customer. In this study, the proposed recommendation approach was applied to a real-life large-scale case study in the domain of laser machines. To ensure the applicability of the proposed RS, a web-based prototype system has been developed, realizing all the modules of the proposed RS.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献