COVID-19 in Brazilian Pediatric Patients: A Retrospective Cross-Sectional Study with a Predictive Model for Hospitalization

Author:

Pacheco Ana Paula123,Laureano Henrique2ORCID,Schidlowski Laire12,Ciorcero Natalia24,Zanatto Thalita24,Borgmann Ariela25ORCID,Fragoso Gabrielle25,Giamberardino Ana Luisa6,Dourado Renata7,Anjos Karine dos8,João Paulo9,Assahide Marina10,Silveira Maria Cristina11,Costa-Junior Victor10,Giamberardino Heloisa312,Prando Carolina1213ORCID

Affiliation:

1. Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil

2. Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

3. Serviço de Epidemiologia e Controle de Infecção Hospitalar, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

4. Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil

5. Medical School, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil

6. Residency in Pediatrics, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

7. Laboratório Genômico, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

8. Serviços Diagnósticos, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

9. Unidade de Terapia Intensiva, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

10. Serviço de Infectologia Pediátrica, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

11. Unidade de Terapia Intensiva e Pronto Atendimento, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

12. Centro de Vacinas, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

13. Serviço de Alergia e Imunologia, Hospital Pequeno Príncipe, Curitiba 80250-060, PR, Brazil

Abstract

Background: This study was conducted to ascertain the most frequent symptoms of COVID-19 infection at first consultation in a pediatric cohort and to devise a predictive model for hospitalization. Methods: This is a retrospective cross-sectional study of 1028 Brazilian patients aged <18 years with SARS-CoV-2 infection in a single reference hospital in the first year of the pandemic. Clinical, demographic, laboratory, and disease spectrum data were analyzed via multivariate logistic regression modeling to develop a predictive model of factors linked to hospitalization. Results: The majority of our cohort were schoolchildren and adolescents, with a homogeneous distribution concerning sex. At first consultation, most patients presented with fever (64.1%) and respiratory symptoms (63.3%). We had 204 admitted patients, including 11 with Pediatric Multisystem Inflammatory Syndrome. Increased D-dimer levels were associated with comorbidities (p = 0.018). A high viral load was observed in patients within the first two days of symptoms (p < 0.0001). Our predictive model included respiratory distress, number and type of specific comorbidities, tachycardia, seizures, and vomiting as factors for hospitalization. Conclusions: Most patients presented with mild conditions with outpatient treatment. However, understanding predictors for hospitalization can contribute to medical decisions at the first patient visit.

Publisher

MDPI AG

Reference33 articles.

1. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2);Li;Science,2020

2. Coronavirus disease 2019 (COVID-19) in Italy;Livingston;JAMA,2020

3. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention;Wu;JAMA,2020

4. (2021, September 26). Johns Hopkins University & Medicine. Available online: https://coronavirus.jhu.edu/map.html.

5. (2021, September 26). Ministério da Saúde do Brasil, Available online: https://www.gov.br/saude/pt-br/coronavirus/boletins-epidemiologicos/boletim-epidemiologico-covid-19-no-44.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3