Piezoelectric Actuators for Tactile and Elasticity Sensing

Author:

Toledo JavierORCID,Ruiz-Díez VíctorORCID,Hernando-García Jorge,Sánchez-Rojas José LuisORCID

Abstract

Piezoelectric actuators have achieved remarkable progress in many fields, being able to generate forces or displacements to perform scanning, tuning, manipulating, tactile sensing or delivering functions. In this work, two piezoelectric PZT (lead zirconate titanate) bimorph actuators, with different tip contact materials, were applied as tactile sensors to estimate the modulus of elasticity, or Young’s modulus, of low-stiffness materials. The actuators were chosen to work in resonance, taking advantage of a relatively low resonant frequency of the out-of-plane vibrational modes, associated with a convenient compliance, proven by optical and electrical characterization. Optical measurements performed with a scanning laser vibrometer confirmed that the displacement per applied voltage was around 437 nm/V for the resonator with the lower mass tip. In order to determine the modulus of elasticity of the sensed materials, the stiffness coefficient of the resonator was first calibrated against a force sensor, obtaining a value of 1565 ± 138 N/m. The actuators were mounted in a positioning stage to allow approximation and contact of the sensor tip with a set of target materials. Electrical measurements were performed using the resonator as part of an oscillator circuit, and the modulus of elasticity of the sample was derived from the contact resonant frequency curve of the cantilever–sample system. The resulting sensor is an effective, low-cost and non-destructive solution compared to atomic force microscopy (AFM) techniques. Materials with different modulus of elasticity were tested and the results compared to values reported in the literature.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3