Diagnosis of Pneumonia by Cough Sounds Analyzed with Statistical Features and AI

Author:

Chung Youngbeen,Jin Jie,Jo Hyun In,Lee HyunORCID,Kim Sang-Heon,Chung Sung Jun,Yoon Ho Joo,Park JunhongORCID,Jeon Jin YongORCID

Abstract

Pneumonia is a serious disease often accompanied by complications, sometimes leading to death. Unfortunately, diagnosis of pneumonia is frequently delayed until physical and radiologic examinations are performed. Diagnosing pneumonia with cough sounds would be advantageous as a non-invasive test that could be performed outside a hospital. We aimed to develop an artificial intelligence (AI)-based pneumonia diagnostic algorithm. We collected cough sounds from thirty adult patients with pneumonia or the other causative diseases of cough. To quantify the cough sounds, loudness and energy ratio were used to represent the level and its spectral variations. These two features were used for constructing the diagnostic algorithm. To estimate the performance of developed algorithm, we assessed the diagnostic accuracy by comparing with the diagnosis by pulmonologists based on cough sound alone. The algorithm showed 90.0% sensitivity, 78.6% specificity and 84.9% overall accuracy for the 70 cases of cough sound in pneumonia group and 56 cases in non-pneumonia group. For same cases, pulmonologists correctly diagnosed the cough sounds with 56.4% accuracy. These findings showed that the proposed AI algorithm has value as an effective assistant technology to diagnose adult pneumonia patients with significant reliability.

Funder

Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3