Oil Production Optimization Using Q-Learning Approach

Author:

Zahedi-Seresht Mazyar1ORCID,Sadeghi Bigham Bahram2ORCID,Khosravi Shahrzad1,Nikpour Hoda3

Affiliation:

1. Department of Quantitative Studies, University Canada West, Vancouver, BC V6Z 0E5, Canada

2. Department of Computer Science, Faculty of Mathematical Sciences, Alzahra University, Tehran 1993893973, Iran

3. Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan 4513766731, Iran

Abstract

This paper presents an approach for optimizing the oil recovery factor by determining initial oil production rates. The proposed method utilizes the Q-learning method and the reservoir simulator (Eclipse 100) to achieve the desired objective. The system identifies the most efficient initial oil production rates by conducting a sufficient number of iterations for various initial oil production rates. To validate the effectiveness of the proposed approach, a case study is conducted using a numerical reservoir model (SPE9) with simplified configurations of two producer wells and one injection well. The simulation results highlight the capabilities of the Q-learning method in assisting reservoir engineers by enhancing the recommended initial rates.

Funder

Data Science Lab at the Department of Computer Science, Alzahra University

Publisher

MDPI AG

Reference21 articles.

1. A bibliometric analysis of sustainable oil and gas production research using VOSviewer;Tamala;Clean. Eng. Technol.,2022

2. An overview of oil production stages: Enhanced oil recovery techniques and nitrogen injection;Alagorni;Int. J. Environ. Sci. Dev.,2015

3. Application of derivative-free methodologies to generally constrained oil production optimisation problems;Isebor;Int. J. Math. Model. Numer.,2011

4. Martinez, E.R., Moreno, W.J., Moreno, J.A., and Maggiolo, R. (1994, January 27–29). Application of genetic algorithm on the distribution of gas-lift injection. Proceedings of the SPE Latin America/Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina.

5. Buitrago, S., Rodriguez, E., and Espin, D. (May, January 28). Global optimization techniques in gas allocation for continuous flow gas lift systems. Proceedings of the SPE Gas Technology Symposium, Calgary, AB, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3