Affiliation:
1. Department of Mechanical, Industrial and Transport Engineering, University of Petroșani, 332006 Petroșani, Romania
2. Mining Engineering Department, University of Petrosani, 332006 Petrosani, Romania
Abstract
The steels from which the components of mining machinery are constructed must be based primarily on knowledge of their behaviour under environmental conditions and of the excavation technology. Secondly, the structural changes undergone by the materials due to mechanical and thermal processing and the stresses generated by the action of excavation forces that can induce internal stresses at a level that is difficult to determine must be taken into account. Determining the level of structural and mechanical degradation involves sampling the load-bearing structure elements of the excavation and storage machinery for analysis of the mechanical and chemical properties of the component materials. The paper focuses on issues related to the structural and mechanical degradation of steel as a material for parts of mining machinery. In this paper, a methodology for evaluating the degree of structural degradation of three types of bucket wheel excavators with different operating hours (ERc 1400-30/7-07 with 50,400 h, ERc 1400-30/7-08 with 69,264 h, and SRs 1300-26/3.5 with 112,000 h) is proposed. The methodology aims to provide a quantitative assessment of the structural degradation by considering the specific elastic limit of the material used in the machines and the number of hours of operation. This method uses a minimum set of destructive mechanical tests, such as tensile, resilience for three working temperatures, chemical analysis, and durometry on resistance elements taken from the machine, as well as the use of Weibull analysis. By combining this information with the number of hours of operation, a comprehensive evaluation can be made to determine the extent of degradation and potential maintenance requirements. The use of a minimum set of mechanical tests ensures an efficient and cost-effective approach to assessing the structural integrity of these machines. The metallographic analysis highlighted a predominant and defined form of grain rearrangement in the E14-07 machine after only 50,400 h. The constituents identified in the samples taken from the three machines are ferrite and pearlite. The highest hardness of the samples was recorded for the E14-08 machine, with values between 162–165 HV10. For bucket wheel excavators E14-07 and E14-08, the material structure showed elongated grains in the direction of deformation, compared to the material structure of E13-04, which has finely equiaxed grains. As a result of the research, final conclusions were formulated.
Reference27 articles.
1. An Example of Reparatory Surface Welding of the Mining Machine Vital Part;Hadzima;Commun.—Sci. Lett. Univ. Zilina,2021
2. Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit;Dragan;Arch. Civ. Mech. Eng.,2012
3. Problems of steel construction modal models identification;Czmochowski;Eksploat. I Niezawodn. Ść.-Maint. Reliab.,2012
4. Rusinski, E., Czmochowski, J., Moczko, P., and Pietrusiak, D. (2016, January 11–14). Recent developments in surface mining machines design and modernization. Proceedings of the 13th ISCSM 2016, Belgrade, Serbia.
5. Research on Mining Machinery Gear Materials;Gao;Adv. Mater. Res.,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献