Study on the Extraction Mechanism of Metal Ions on Small Molecular Phase of Tar-Rich Coal under Ultrasonic Loading

Author:

Wang Zetang12,Bao Yuan3,Wang Chaoyong12,Hu Yiliang3

Affiliation:

1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China

3. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

This study aims to elucidate the mechanism by which the ultrasonic loading of metal affects the extraction of small molecular phase substances (low molecular compounds) in tar-rich coal. Tar-rich coal samples were collected from the Huangling mining area in the southeastern Ordos Basin, China. The coal, the leaching solution of the coal, the extraction products, and the extraction residual coal samples with different metal ions loaded by ultrasound were analyzed using field emission scanning electron microscopy, pH detection, gas chromatography–mass spectrometry, a Fourier transform infrared spectrometer, and an X-ray diffractometer. The obtained results indicated that the ultrasonic loading of coal samples with different metal ions (Mn2+, Co2+, Cu2+, Fe2+, and Ni2+) promoted the extraction of small molecular phase substances in coal and increased the proportion of extracted aliphatic hydrocarbons, alkylbenzene, naphthalene, phenanthrene, and other compounds. The extraction rate of Mn2+ was the highest. Compared with the control group, the extraction rate was increased by 212%. After the ultrasonic loading of metal ions, the physical structure of the coal was loose and the contact area of the solvent increased; the degree of branching and the hydrogen enrichment of the residual coal decreased, the aromaticity increased, the interlayer spacing and stacking layers decreased, and the stacking degree and ductility increased. Metal ions exchanged with hydrogen ions in the coal molecules. At the same time, the metal ions were adsorbed in the coal molecules and effectively combined with free electrons in the coal molecules to catalyze; thus, the extraction effect of the small molecular phase of tar-rich coal was improved. This provides a new method for the clean and efficient utilization of tar-rich coal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3