Mechanical Properties of 3D-Printed Occlusal Splint Materials

Author:

Prpic Vladimir1ORCID,Spehar Filipa2ORCID,Stajdohar Dominik2,Bjelica Roko3ORCID,Cimic Samir4ORCID,Par Matej5ORCID

Affiliation:

1. Department of Fixed Prosthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

2. School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

3. Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

4. Department of Removable Prosthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

5. Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Data regarding the mechanical properties of three-dimensionally (3D) printed materials for occlusal splint manufacturing are scarce. The aim of the present study was to evaluate the flexural strength and surface hardness of modern 3D-printed occlusal splint materials and compare them with two control groups, namely, milled and conventional cold-polymerized occlusal splint materials. A total of 140 rectangular specimens were manufactured for the present study. The specimens were prepared in accordance with the International Organization for Standardization standards (ISO 20795-1:2013). Five 3D-printed (NextDent Ortho Rigid, Dental LT Clear, Dentona Flexisplint, Cosmos Bite Splint, and ProArt Print Splint), one milled (ProArt CAD Splint), and one cold-polymerized (ProBase Cold) occlusal splint materials were used to determine flexural strength and surface hardness values. The three-point flexure test was used for the determination of flexural strength values, while Vickers hardness was measured to determine surface hardness. Ten specimens (n = 10) of each material were tested using these procedures. One-way ANOVA and Tukey’s post-hoc test were used to analyze the obtained results (α = 0.05). The values of flexural strength ranged from 46.1 ± 8.2 MPa to 106 ± 8.3 MPa. The Vickers hardness values ranged from 4.9 ± 0.5 VHN to 20.6 ± 1.3 VHN. Significant differences were found among the tested materials (p < 0.0001). The milled and cold-polymerized materials yielded higher values for both flexural strength (only one 3D-printed resin had comparable results to cold-polymerized acrylics) and surface hardness. There are differences in the mechanical properties of the various tested occlusal splint materials. The flexural strength of most of the 3D-printed materials and their surface hardness values are still inferior when compared to the milled or cold-polymerized materials.

Publisher

MDPI AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3