A Study on Optimization of CBM Water Drainage by Well-Test Deconvolution in the Early Development Stage

Author:

Gao Dapeng,Liu Yuewu,Guo Zhidong,Han Jun,Lin Jingde,Fang Huijun,Ma Hailing,Tsai Sang-BingORCID

Abstract

Different from the conventional gas reservoir, coalbed methane is developed mainly by water drainage, which leads methane desorption after reservoir pressure drop. Water drainage at a reasonable speed in the early development stage is the key for enhancing later gas performance. Therefore, the investigation radius, which reflects the pressure drop region scale, is studied by deconvolution well-test to find the reasonable water drainage speed in the early period. First, the early production data (well-bottom pressure and water rate) are processed by deconvolution algorithm, and then the pressure data under unit rate is obtained to invert the comprehensive reservoir permeability and investigation radius. This deconvolution method can save the cost of the conventional well-test, and avoid reservoir damage caused by frequent well shut-off. The feasibility of the deconvolution test method is verified by comparing its interpretation results with those of the conventional pressure drop/build-up test. For a field application, the 29 wells’ comprehensive permeability are inverted by the deconvolution well-test using early water production data of Hancheng block. Furthermore, their investigation radius and pressure drawdown gradient are calculated, and the performance optimization is determined by relationship analysis between working fluid level and steady gas production rate. We find that well-bottom pressure and reservoir pressure should decrease steadily in the early development stage, with the working fluid level declining less than 1 m/d (1 m per day) in wellbore, and the pressure drawdown gradient declining less than 2.8 MPa/100 m.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference30 articles.

1. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir;Li;Acta Pet. Sin.,2014

2. Smart de-watering and production system through real-time water level surveillance for Coal-Bed Methane wells

3. Relationship between discharge rate and productivity of coalbed methane wells;Li;J. China Coal Soc.,2009

4. Control factors of coalbed methane well desorption cone under drainage well network in southern Qinshui basin;Liu;J. China Univ. Min. Technol.,2012

5. Production characteristics and affecting factors of high—mid rank coalbed methane wells: Taking Fanzhuang and Hancheng mining areas as examples

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3