Design Optimization Approach of a Large-Scale Moving Framework for a Large 5-Axis Machining Center

Author:

Zhong Gaoyan,Liu Ping,Mei Xinliang,Wang Yanqing,Xu Fang,Yang ShoufengORCID

Abstract

The traditional machine tool design method with metal materials makes large-scale moving structures very heavy, which seriously impacts dynamic performance and results in significant energy consumption. Using sandwich structures of composite materials to replace metal materials is an important strategy for lightweight large-scale moving structures. However, this kind of substitution is generally believed to be difficult because foam-filled sandwich structures usually show nonlinear characteristics and must balance the moving mass, material costs, and structural stiffness. In the present study, we proposed a design optimization approach for a large-scale moving framework in a large 5-axis machining center (L5AMC) considering large dimensions in the x, y, and z work space and high machining speed with the aim of minimizing the displacements of the milling head. An improved approach, named the 3-step design optimization, was executed to obtain the optimum framework structures to solve the contradiction between the moving mass, material costs, and structural stiffness. This approach was based on multi-objective optimization and finite element analysis. The structural stiffness of the framework after optimization increased by 89% compared with before optimization although the mass increased by 6% and the material costs increased by 9%. A finite element simulation under four given operational loads showed that the displacements of the milling head were all less than the design requirement of 0.25 mm. The results indicated that the proposed 3-step design optimization approach for the optimal design of a large-scale moving framework was feasible and successful. A 40 m × 6 m × 4 m L5AMC prototype was manufactured, and the actual verification results indicated that the large-scale moving framework fully met the design requirements of the L5AMC and reduced energy consumption.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3