Understanding Citizen Issues through Reviews: A Step towards Data Informed Planning in Smart Cities

Author:

Dilawar Noman,Majeed Hammad,Beg Mirza Omer,Ejaz Naveed,Muhammad Khan,Mehmood IrfanORCID,Nam Yunyoung

Abstract

Governments these days are demanding better Smart City technologies in order to connect with citizens and understand their demands. For such governments, much needed information exists on social media where members belonging to diverse groups share different interests, post statuses, review and comment on various topics. Aspect extraction from this data can provide a thorough understanding of citizens’ behaviors and choices. Also, categorization of these aspects can better summarize societal concerns regarding political, economic, religious and social issues. Aspect category detection (ACD) from people reviews is one of the major tasks of aspect-based sentiment analysis (ABSA). The success of ABSA is mainly defined by the inexpensive and accurate machine-processable representation of the raw input sentences. Previous approaches rely on cumbersome feature extraction procedures from sentences, which adds its own complexity and inaccuracy in performing ACD tasks. In this paper, we propose an inexpensive and simple method to obtain the most suitable representation of a sentence-vector through different algebraic combinations of a sentence’s word vectors, which will act as an input to any machine learning classifier. We have tested our technique on the restaurant review data provided in SemEval-2015 and SemEval-2016. SemEval is a series of global challenges to evaluate the effectiveness of disambiguation of word sense. Our results showed the highest F1-scores of 76.40% in SemEval-2016 Task 5, and 94.99% in SemEval-2015 Task 12.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3