Abstract
An accurate electrocardiogram (ECG) beat classification can benefit the diagnosis of the cardiovascular disease. Deep convolutional neural networks (CNN) can automatically extract valid features from data, which is an effective way for the classification of the ECG beats. However, the fully-connected layer in CNNs requires a fixed input dimension, which limits the CNNs to receive fixed-scale inputs. Signals of different scales are generally processed into the same size by segmentation and downsampling. If information loss occurs during a uniformly-sized process, the classification accuracy will ultimately be affected. To solve this problem, this paper constructs a new CNN framework spatial pyramid pooling (SPP) method, which solves the deficiency caused by the size of input data. The Massachusetts Institute of Technology-Biotechnology (MIT-BIH) arrhythmia database is employed as the training and testing data for the classification of heartbeat signals into six categories. Compared with the traditional method, which may lose a large amount of important information and easy to be over-fitted, the robustness of the proposed method can be guaranteed by extracting data features from different sizes. Experimental results show that the proposed architecture network can extract more high-quality features and exhibits higher classification accuracy (94%) than the traditional deep CNNs (90.4%).
Funder
Natural Science Foundation of Guangdong Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leveraging electrocardiography signals for deep learning-driven cardiovascular disease classification model;Heliyon;2024-08
2. A Novel 1-D CCANet for ECG Classification;Applied Sciences;2021-03-19
3. Temporal Pyramid Pooling for Decoding Motor-Imagery EEG Signals;IEEE Access;2021
4. E-Key: an EEG-Based Biometric Authentication and Driving Fatigue Detection System;IEEE Transactions on Affective Computing;2021
5. Automatic recognition of arrhythmia using a CNN-based broad learning system;2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2020-08