A Spatial Pyramid Pooling-Based Deep Convolutional Neural Network for the Classification of Electrocardiogram Beats

Author:

Li JiaORCID,Si Yujuan,Lang Liuqi,Liu Lixun,Xu Tao

Abstract

An accurate electrocardiogram (ECG) beat classification can benefit the diagnosis of the cardiovascular disease. Deep convolutional neural networks (CNN) can automatically extract valid features from data, which is an effective way for the classification of the ECG beats. However, the fully-connected layer in CNNs requires a fixed input dimension, which limits the CNNs to receive fixed-scale inputs. Signals of different scales are generally processed into the same size by segmentation and downsampling. If information loss occurs during a uniformly-sized process, the classification accuracy will ultimately be affected. To solve this problem, this paper constructs a new CNN framework spatial pyramid pooling (SPP) method, which solves the deficiency caused by the size of input data. The Massachusetts Institute of Technology-Biotechnology (MIT-BIH) arrhythmia database is employed as the training and testing data for the classification of heartbeat signals into six categories. Compared with the traditional method, which may lose a large amount of important information and easy to be over-fitted, the robustness of the proposed method can be guaranteed by extracting data features from different sizes. Experimental results show that the proposed architecture network can extract more high-quality features and exhibits higher classification accuracy (94%) than the traditional deep CNNs (90.4%).

Funder

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging electrocardiography signals for deep learning-driven cardiovascular disease classification model;Heliyon;2024-08

2. A Novel 1-D CCANet for ECG Classification;Applied Sciences;2021-03-19

3. Temporal Pyramid Pooling for Decoding Motor-Imagery EEG Signals;IEEE Access;2021

4. E-Key: an EEG-Based Biometric Authentication and Driving Fatigue Detection System;IEEE Transactions on Affective Computing;2021

5. Automatic recognition of arrhythmia using a CNN-based broad learning system;2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3