Author:
Zhang Qinyi,Fan Mengchao,Hui Jing,Huang Haochong,Li Zijian,Zheng Zhiyuan
Abstract
Over the years, the Colorado River has become inadequate for development due to natural factors and human activities. The hydroelectric facilities in Lake Mead and Lake Powell are also not fully utilized. Downstream, Mexico is also involved in the competition for water. The resulting allocation of water and electricity resources and sustainable development are hanging over our heads and waiting to be solved. In this work, a simplified Penstock Dam model and a Distance Decay model are designed based on publicly available data, and a Multi-attribute Decision model for hydropower based on the Novel Technique for Order Preference by Similarity to an Ideal Solution method is proposed. In addition, an Improved Particle Swarm Optimization model is proposed by adding oscillation parameters. The Mexican equity problem is also explored. The theoretical results show that the average error of the Penstock Dam model is 3.2%. The minimum water elevation requirements for Lake Mead and Lake Powell are 950 ft and 3460 ft, respectively; they will not meet demand in 2026 and 2027 without action, and they will require the introduction of 3.69×1010 m3 and 2.08×109 m3 water in 2027 and 2028, respectively. The solution shows that the net profit for the United States is greatest when 38.6% of the additional water is used for general purposes, 47.5% is used for power generation, and the rest flows to Mexico. A final outlook on the sustainability of the Colorado River is provided.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Young Talents Promotion Project of Beijing Association for Science and Technology
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry