Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes

Author:

Santos Jandyson,Vetere Alessandro,Wisniewski Alberto,Eberlin Marcos,Schrader Wolfgang

Abstract

The combination of fractionation methods for crude oils, such as saturate, aromatic, resin and asphaltene (SARA) fractionation, in combination with analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been used for reducing the complexity and improving the characterization of crude oils. We have used the FT-ICR MS techniques in conjunction with electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)) to find trends between MS data of SARA fractions of crude oils with different American Petroleum Institute (API) gravities from the Sergipe-Alagoas basin (Brazil), focusing on the resin and asphaltene fractions. For the first time, an adaptation of the SARA fractionation has been performed to obtain a second resin fraction, which presented compounds with an intermediate aromaticity level between the first resins and asphaltene fraction. Both the first and second resin and the asphaltene fractions were studied on a molecular level using multiple ionization techniques and FT-ICR MS to find a direct relationship between the API gravities of a heavy, medium and light crude oil. For the FT-ICR MS data and the API gravities an aromaticity tendency was found. The data show that the use of SARA fractionation with FT-ICR MS offers a tool for comprehensive characterization of individual fractions and selective chemical characterization of the components in crude oils.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3