Author:
Baglivo Cristina,Bonuso Sara,Congedo Paolo
Abstract
A concept of Air-Cooled Heat Pump (ACHP) coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE), also called Horizontal Earth-To-Air Heat Exchanger (EAHX), has been proposed. The Air-Cooled Heat Pump is a system which transfers heat from outside source (air) to inside sink (water) and vice versa in summertime. The innovation is to provide a geothermal treatment of pre-heating/cooling of air before meeting the evaporator in winter or the condenser in summer of the heat pump. Besides, it is known that the variations of the ground temperature, respect to the external air one, are mitigated already in the first layers of the ground throughout the year, due to the high thermal inertia of the ground, letting the heat pump work with more mitigated conditions, improving the performances. The behaviour of HAGHE has been investigated by varying the length and the installation depth of the probes, the air flow rate and the ground thermal properties. All the combinations have been implemented using TRNSYS 17 software (Transient System Simulation Program) to obtain the outlet temperatures from HAGHE, resulting from the 54 configurations. The results are compared in terms of Coefficient of Performance (COP) in wintertime and Energy Efficiency Ratio (EER) in summertime between configurations with and without the coupling with HAGHE. In addition, two seasonal performance SCOP and SEER coefficients have been calculated considering, not only the inlet air temperatures into the Air-Cooled Heat Pump, but also their frequency of occurrence, the off-set external temperature (16 °C), the nominal external temperature and heating and cooling loads.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference23 articles.
1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings,2010
2. Renewable Energy Applications for Existing Buildings;Sheila,2011
3. Egec Geothermal Declaration 1998–2018|20 Years of EGEC,2018
4. Ground as a possible heat pump source;Lazzarin;Geotherm. Energy,2001
5. Feasibility study and numerical simulation of a ground source heat pump plant, applied to a residential building
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献