Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time–Frequency Features for the Detection and Severity Classification of Parkinson’s Disease

Author:

Setiawan FebryanORCID,Lin Che-Wei

Abstract

Conventional approaches to diagnosing Parkinson’s disease (PD) and rating its severity level are based on medical specialists’ clinical assessment of symptoms, which are subjective and can be inaccurate. These techniques are not very reliable, particularly in the early stages of the disease. A novel detection and severity classification algorithm using deep learning approaches was developed in this research to classify the PD severity level based on vertical ground reaction force (vGRF) signals. Different variations in force patterns generated by the irregularity in vGRF signals due to the gait abnormalities of PD patients can indicate their severity. The main purpose of this research is to aid physicians in detecting early stages of PD, planning efficient treatment, and monitoring disease progression. The detection algorithm comprises preprocessing, feature transformation, and classification processes. In preprocessing, the vGRF signal is divided into 10, 15, and 30 s successive time windows. In the feature transformation process, the time domain vGRF signal in windows with varying time lengths is modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, principal component analysis (PCA) is used for feature enhancement. Finally, different types of convolutional neural networks (CNNs) are employed as deep learning classifiers for classification. The algorithm performance was evaluated using k-fold cross-validation (kfoldCV). The best average accuracy of the proposed detection algorithm in classifying the PD severity stage classification was 96.52% using ResNet-50 with vGRF data from the PhysioNet database. The proposed detection algorithm can effectively differentiate gait patterns based on time–frequency spectrograms of vGRF signals associated with different PD severity levels.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Epidemiology of Parkinson Disease

2. Statistics on Parkinson’s EIN: 13-1866796https://bit.ly/2RCeh9H

3. Parkinson’s Disease Information Pagehttps://bit.ly/2xTA6rL

4. Accelerometric assessment of levodopa-induced dyskinesias in Parkinson's disease

5. Gait analysis and clinical correlations in early Parkinson�s disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3