Abstract
We propose a portfolio rebalance framework that integrates machine learning models into the mean-risk portfolios in multi-period settings with risk-aversion adjustment. In each period, the risk-aversion coefficient is adjusted automatically according to market trend movements predicted by machine learning models. We employ Gini’s Mean Difference (GMD) to specify the risk of a portfolio and use a set of technical indicators generated from a market index (e.g., S&P 500 index) to feed the machine learning models to predict market movements. Using a rolling-horizon approach, we conduct a series of computational tests with real financial data to evaluate the performance of the machine learning integrated portfolio rebalance framework. The empirical results show that the XGBoost model provides the best prediction of market movement, while the proposed portfolio rebalance strategy generates portfolios with superior out-of-sample performances in terms of average returns, time-series cumulative returns, and annualized returns compared to the benchmarks.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献