Abstract
With drastic changes to the environment arising from global warming, there has been an increase in both the frequency and intensity of typhoons in recent years. Super typhoons have caused large-scale damage to the natural ecological environment in coastal cities. The accurate assessment and monitoring of urban vegetation damage after typhoons is important, as they contribute to post-disaster recovery and resilience efforts. Hence, this study examined the application of the easy-to-use and cost-effective Unmanned Aerial Vehicle (UAV) oblique photography technology and proposed an improved detection and diagnostic measure for the assessment of street-level damage to urban vegetation caused by the super typhoon Mangkhut in Shenzhen, China. The results showed that: (1) roadside trees and artificially landscaped forests were severely damaged; however, the naturally occurring urban forest was less affected by the typhoon. (2) The vegetation height of roadside trees decreased by 20–30 m in most areas, and that of artificially landscaped forests decreased by 5–15 m; however, vegetation height in natural forest areas did not change significantly. (3) The real damage to vegetation caused by the typhoon is better reflected by measuring the change in vegetation height. Our study validates the use of UAV remote sensing to accurately measure and assess the damage caused by typhoons to roadside trees and urban forests. These findings will help city planners to design more robust urban landscapes that have greater disaster coping capabilities.
Funder
Shenzhen Science and Technology Project
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献