Surface Wave Developments under Tropical Cyclone Goni (2020): Multi-Satellite Observations and Parametric Model Comparisons

Author:

Yurovskaya MariaORCID,Kudryavtsev VladimirORCID,Mironov AlexeyORCID,Mouche Alexis,Collard Fabrice,Chapron Bertrand

Abstract

Over the Philippine Sea, the tropical cyclone (TC) Goni reaches category 5 on 29–31 October 2020. Multi-satellite observations, including CFOSAT SWIM/SCAT and Sentinel-1 SAR data, are jointly analyzed to assess the performances of a parametric model. Recently developed to provide a fast estimation of surface wave developments under rapidly evolving TCs, this full 2D parametric model (KYCM) and its simplified self-similar solutions (TC-wave geophysical model function (TCW GMF)) are thoroughly compared with satellite observations. TCW GMF provides immediate first-guess estimates, at any location in space and time, for the significant wave height, wavelength, and wave direction parameters. Moving cyclones trigger strong asymmetrical wave fields, associated to a resonance between wave group velocity and TC heading velocity. For TC Goni, this effect is well evidenced and captured, leading to extreme waves reaching up to 8 m, further outrunning as swell systems with wavelengths about 200–250 m in the TC heading direction, slightly shifted leftwards. Considering wind field constrained with very highly resolved Sentinel-1 SAR measurements and medium resolution CFOSAT SCAT data, quantitative agreements between satellite measurements and KYCM/TCW GMF results are obtained. Far from the TC inner core (∼10 radii of maximum wind speed), the superposition of outrunning swell systems and local wind waves estimates leads to Hs values very close to altimeter measurements. This case study demonstrates the promising capabilities to combine multi-satellite observations, with analytical self-similar solutions to advance improved understandings of surface wave generation under extreme wind conditions.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3