Abstract
Realistic predictions of the contribution of the uncertainty sources affecting the quality of the bathymetric measurements prior to a survey is of importance. To this end, models predicting these contributions have been developed. The objective of the present paper is to assess the performance of the bathymetric uncertainty prediction model for Phase Difference Bathymetric Sonars (PDBS) which is an interferometric sonar. Two data sets were acquired with the Bathyswath-2 system with a frequency of 234 kHz at average water depths of around 26 m and 8 m with pulse lengths equal to 0.0555 ms and 0.1581 ms, respectively. The comparison between the bathymetric uncertainties derived from the measurements and those predicted using the current model indicates a relatively good agreement except for the across-track distances close to the nadir. The performance of the prediction model can be improved by modifying the term addressing the effect of footprint shift, i.e., spatial decorrelation, on the bottom due to fact that at a given time the footprints seen by different receiving arrays are slightly different.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献