Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery

Author:

Saboori Mojtaba,Homayouni SaeidORCID,Shah-Hosseini RezaORCID,Zhang Ying

Abstract

Feature selection to reduce redundancies for efficient classification is necessary but usually time consuming and challenging. This paper proposed a comprehensive analysis for optimum feature selection and the most efficient classifier for accurate urban area mapping. To this end, 136 multiscale textural features alongside a panchromatic band were initially extracted from WorldView-2, GeoEye-3, and QuickBird satellite images. The wrapper-based and filter-based feature selection were implemented to optimally select the best ten percent of the primary features from the initial feature set. Then, machine leaning algorithms such as artificial neural network (ANN), support vector machine (SVM), and random forest (RF) classifiers were utilized to evaluate the efficiency of these selected features and select the most efficient classifier. The achieved optimum feature set was validated using two other images of WorldView-3 and Pleiades. The experiments revealed that RF, particle swarm optimization (PSO), and neighborhood component analysis (NCA) resulted in the most efficient classifier and wrapper-based and filter-based methods, respectively. While ANN and SVM’s process time depended on the number of input features, RF was significantly resistant to the criterion. Dissimilarity, contrast, and correlation features played the greatest contributing role in the classification performance among the textural features used in this study. These trials showed that the feature number could be reduced optimally to 14 from 137; these optimally selected features, alongside the RF classifier, can produce an F1-measure of about 0.90 for different images from five very high resolution satellite sensors for various urban geographical landscapes. These results successfully achieve our goal of assisting users by eliminating the task of optimal feature selection and classifier, thereby increasing the efficiency of urban land use/cover classification from very high resolution images. This optimal feature selection can also significantly reduce the high computational load of the feature-engineering phase in the machine and deep learning approaches.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3