Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District

Author:

Jiang Lei,Yang Yuting,Shang SonghaoORCID

Abstract

Quantitative assessment of crop water-use efficiency (WUE) is an important basis for high-efficiency use of agricultural water. Here we assess the WUE of maize in the Hetao Irrigation District, which is a representative irrigation district in the arid region of Northwest China. Specifically, we firstly mapped the location of the maize field by using a remote sensing/phenological–based vegetation classifier and then quantified the maize water use and yield by using a dual-source remote-sensing evapotranspiration (ET) model and a crop water production function, respectively. Validation results show that the adopted phenological-based vegetation classifier performed well in mapping the spatial distributions and inter-annual variations of maize planting, with a kappa coefficient of 0.86. In addition, the ET model based on the hybrid dual-source scheme and trapezoid framework also obtained high accuracy in spatiotemporal ET mapping, with an RMSE of 0.52 mm/day at the site scale and 26.21 mm/year during the maize growing season (April–October) at the regional scale. Further, the adopted crop water production function showed high accuracy in estimating the maize yield, with a mean relative error of only 4.3%. Using the estimated ET, transpiration, and yield of maize, the mean maize WUE based on ET and transpiration in the study region were1.94 kg/m3 and 3.06 kg/m3, respectively. Our results demonstrate the usefulness and validity of remote sensing information in mapping regional crop WUE.

Funder

National Natural Science Foundation of China

Research Program of the State Key Laboratory of Hydroscience and Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3