Atmosphere and Terrain Coupling Simulation Framework for High-Resolution Visible-Thermal Spectral Imaging over Heterogeneous Land Surface

Author:

Qiu XianfeiORCID,Zhao Huijie,Jia GuoruiORCID,Li Jiyuan

Abstract

Realistic modeling of high-resolution earth radiation signals in the visible-thermal spectral domain remains difficult, due to the complex radiation interdependence induced by the heterogeneous and rugged features of land surface. To find the trade-off between accuracy and efficiency for image simulation, this paper established a unified simulation framework for the entire visible-thermal spectral domain, based on the energy balance between solar-reflected and thermal radiation components over rugged surfaces. Considering the joint contributions of atmospheric and topographic adjacency effects, three spatial–spectral convolution kernels were uniformly designed to quantify the topographic irradiance, the trapping effect, and the atmospheric adjacency effect. Radiation signal simulation was implemented in three forms: land surface temperature (LST), bottom of atmosphere (BOA) radiance, and top of atmosphere (TOA) radiance. The accuracy was validated with onboard data from China’s Gaofen-5 visual and infrared multispectral sensor (VIMS) over rugged desert. The simulation results demonstrate that the root mean square of relative deviations between the simulated and onboard TOA radiance are related to terrain, as 3–17% and 6–38% for the summer and winter scene, respectively. The evaluation of radiance components indicates the utility of the simulation framework to quantify the uncertainty associated with atmosphere and terrain coupling effects, in the sensor design and operation stages.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3