Effects of Charged Martian Dust on Martian Atmosphere Remote Sensing

Author:

Gao XuebangORCID,Xie Li,Dou Xuqiang,Zhou Jun

Abstract

In this paper, the extinction property and optical depth of charged Martian dust at infrared band 3 THz–300 THz are studied using the Mie scattering theory. It is found that the extinction coefficients of Martian atmospheric dust and the dust optical depth (DOD) of the Martian atmosphere can be amplified significantly as the dust particles are charged. This extinction amplification has a peak, called amplification resonance, which shifts toward the upper left of the r-q parameter plane with increasing frequency. Here, r denotes the particle radius and q denotes the particle’s total net charge. The amplification of the Martian DOD is more significant at high altitudes than at low altitudes because the particles at high altitudes are smaller. For example, at an altitude of 30–50 km, the dust optical depth at 30 THz can be increased by 60–200%. However, at 3 THz–10 THz, the DOD at the near surface altitude (0–10 km) can still be enhanced by ~80%. This implies that by treating the Martian dust as uncharged particles, the dust density constructed from the Martian DOD data might be overestimated. The estimation error of the dust density of the Martin atmosphere may be reduced by counting the enhancement of the DOD that is caused by charged dust.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3