Using a Lidar-Based Height Variability Method for Recognizing and Analyzing Fault Displacement and Related Fossil Mass Movement in the Vipava Valley, SW Slovenia

Author:

Popit TomislavORCID,Rožič Boštjan,Šmuc Andrej,Novak Andrej,Verbovšek TimotejORCID

Abstract

The northern slopes of the Vipava Valley are defined by a thrust front of Mesozoic carbonates over Tertiary flysch deposits. These slopes are characterized by a variety of different surface forms, among which recent and fossil polygenetic landslides are the most prominent mass movements. We used the height variability method as a morphometric indicator, which proved to be the most useful among the various methods for quantifying and visualizing fossil landslides. Height variability is based on the difference in elevations derived from a high-resolution lidar-derived DEM. Based on geologic field mapping and geomorphometric analysis, we distinguished two main types of movements: structurally induced movement along the fault zone and movements caused by complex Quaternary gravitational slope processes. The most pronounced element is the sliding of the huge rotational carbonate massif, which was displaced partly along older fault structures in the hinterland of fossil rock avalanches and carbonate blocks. In addition to the material properties of the lithology, the level of surface roughness also depends on the depositional processes of the individual sedimentary bodies. These were formed by complex sedimentary events and are intertwined in the geological past. The sedimentary bodies indicate two large fossil rock avalanches, while the smaller gravity blocks indicate translational–rotational slides of carbonate and carbonate breccia.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3