A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers

Author:

Tian FengORCID,Suo Zhiyong,Wang Yuekun,Lu ZhengORCID,Wang Zhen,Li Zhenfang

Abstract

This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Beijing Nova Program from Beijing Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3