Focused Lunar Imaging Experiment Using the Back Projection Algorithm Based on Sanya Incoherent Scatter Radar

Author:

Li MingyuanORCID,Yue XinanORCID,Ding Feng,Ning Baiqi,Wang Junyi,Zhang Ning,Luo Junhao,Huang Lijia,Wang YonghuiORCID,Wang Zhongqiu

Abstract

Previous ground-based, radar lunar imaging experiments have usually employed the Range-Doppler (RD) algorithm. This algorithm performs in the frequency domain and has high computational efficiency. However, in the case of a long coherent integration time, the defocus phenomenon will appear, and the image will be smeared. This study proposes the use of the back projection (BP) algorithm to obtain focused lunar images to solve this problem. The BP algorithm is a time-domain algorithm which is frequently employed in synthetic aperture radar (SAR) imaging and can theoretically achieve the focused imaging of each pixel in an arbitrarily long coherent integration time. However, the largest drawback of this algorithm is its high computational complexity. Therefore, this study only applies this method to map local regions of the moon. We select Sanya incoherent scatter radar (SYISR) as the transmitting and receiving device and utilize the linear frequency modulation chirp pulse to transmit right-hand, circularly polarized electromagnetic waves and to receive left-hand, circularly polarized echoes. RD and BP algorithms are simultaneously adopted to image the Pythagoras crater region, and a contrastive analysis is performed. The results show that the BP algorithm can be well applied to a ground-based, radar lunar imaging experiment and that it has a better focusing performance, but the effect is not as obvious as expected. Thus, the processing method needs to be further improved. In addition, the computational efficiency of BP is very low, and certain fast algorithms need to be applied to improve it.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference23 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3