Reinforcement of Aluminium-Matrix Composites with Glass Fibre by Metallurgical Synthesis

Author:

Zasadzińska MałgorzataORCID,Strzępek PawełORCID,Mamala Andrzej,Noga PiotrORCID

Abstract

Continuous pressure put on researchers all over the world these days to design materials of improved properties create opportunities to study new methods of production in conjunction with entirely new and innovative materials such as alloys or composites. The authors in the current research manufactured aluminium reinforced with glass fibre (GF) using metallurgical synthesis, which is an unconventional and not sufficiently studied method of production. The composites with 1, 2 and 5 wt.% of glass fibre were produced with additional material obtained using consolidation of aluminium powder in extrusion process as reference material with 5 wt.% of glass fibre. All the materials were subjected to series of tests in order to determine their microstructure, density, electrical properties, hardness and susceptibility to plastic working in the compression test. It was found that glass fibre during metallurgical synthesis of aluminium composite partially melted and thus did not reinforce the material as well as during extrusion, which has been observed not only in the scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis but also in the analysis of macroscopic physical and mechanical properties. Based on the analysed samples, it may be stated that electrical conductivity of the samples obtained via metallurgical synthesis is higher than might be estimated on the basis of the rule of mixtures and glass fibre content and concerning the sample with 5 wt.% of GF is higher (32.1 MS/m) than of the reference material obtained in extrusion process (30.6 MS/m). Similar situation has been observed in terms of hardness of the tested samples where a minor increase in hardness was noticeable as the amount of glass fibre increased in the composites obtained by metallurgical synthesis. It is believed to be related to the melting of glass fibre, which reduced the volume fraction of GF containing mainly silicon oxides and their diffusion into the aluminium matrix, thus causing solid solution strengthening.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3