Temperature-Dependent Raman Spectroscopic Study of the Double Molybdate KBi(MoO4)2

Author:

Wang Min,Wang Changhao,Wang Jian,Lu Liming,Gong Xiaoye,Tang Xiaohui,Zhang Fu,You JinglinORCID

Abstract

In situ high-temperature Raman spectra of polycrystalline KBi(MoO4)2 were recorded from room temperature to 1073 K. Thermal stability of the monoclinic KBi(MoO4)2 was examined by temperature-dependent XRD. The monoclinic phase transformed into the scheelite tetragonal structure at 833 K, and then to the monoclinic phase at 773 K. Quantum chemistry ab initio calculation was performed to simulate the Raman spectra of the structure of KBi(MoO4)2 high-temperature melt. The experimental Raman band at 1023 K was deconvoluted into seven Gaussian peaks, and the calculated results were in good agreement with the experimental data. Therefore, the vibrational modes of Raman peaks of molten KBi(MoO4)2 were assigned. It was confirmed that the isolated structure of [Bi(MoO4)2]− monomer, consisting of Mo6+ centers and Bi3+ sub-centers connected by edge-sharing, mainly exists in the melt of KBi(MoO4)2.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural and down-conversion luminescence of Ce3+ and Yb3+ doped NaY(MoO4)2 phosphor;Journal of Materials Science: Materials in Electronics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3