Environmentally-Benign Phytic Acid-Based Multilayer Coating for Flame Retardant Cotton

Author:

Magovac EvaORCID,Jordanov IgorORCID,Grunlan Jaime C.ORCID,Bischof SandraORCID

Abstract

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Non-halogen FR treatment of cellulosic textiles;Magovac;Tekstil,2015

2. Environmental drivers for replacement of halogenated flame retardants;Hull,2014

3. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs)

4. Flame retardant of cellulosic materials and their composites;Mohamed,2015

5. Flame resistant cotton;Yang,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3