PacBio Full-Length Transcriptome of a Tetraploid Sinocyclocheilus multipunctatus Provides Insights into the Evolution of Cavefish

Author:

Zhang Renyi1ORCID,Duan Qian1ORCID,Luo Qi1,Deng Lei1

Affiliation:

1. School of Life Sciences, Guizhou Normal University, Guiyang 550025, China

Abstract

Sinocyclocheilus multipunctatus is a second-class nationally protected wild animal in China. As one of the cavefish, S. multipunctatus has strong adaptability to harsh subterranean environments. In this study, we used PacBio SMRT sequencing technology to generate a first representative full-length transcriptome for S. multipunctatus. Sequence clustering analysis obtained 232,126 full-length transcripts. Among all transcripts, 40,487 were annotated in public databases, while 70,300 microsatellites, 2384 transcription factors, and 16,321 long non-coding RNAs were identified. The phylogenetic tree showed that S. multipunctatus shows a closer relationship to Carassius auratus and Cyprinus carpio, phylogenetically diverging from the common ancestor ~14.74 million years ago (Mya). We also found that between 15.6 and 17.5 Mya, S. multipunctatus also experienced an additional whole-genome duplication (WGD) event, which may have promoted the species evolution of S. multipunctatus. Meanwhile, the overall rates of evolutionary of polyploid S. multipunctatus were significantly higher than those of the other cyprinids, and 220 positively selected genes (PSGs) were identified in two sub-genomes of S. multipunctatus. These PSGs are likely to fulfill critical roles in the process of adapting to diverse cave environments. This study has the potential to facilitate future investigations into the genomic characteristics of S. multipunctatus and provide valuable insights into revealing the evolutionary history of polyploid S. multipunctatus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Educational Committee

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3