Large-Scale and High-Accuracy Phenotyping of Populus simonii Leaves Using the Colony Counter and OpenCV

Author:

Zhu Sheng12ORCID,Zhang Heng1,Chen Siyuan2,Zhang Lei3,Huang Minren1

Affiliation:

1. Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

3. Agriculture and Rural Bureau of Pingquan City, Pingquan 067500, China

Abstract

Image-based morphometric technology is broadly applicable to generate large-scale phenomic datasets in ecological, genetic and morphological studies. However, little is known about the performance of image-based measuring methods on plant morphological characters. In this study, we presented an automatic image-based workflow to obtain the accurate estimations for basic leaf characteristics (e.g., ratio of length/width, length, width, and area) from a hundred Populus simonii pictures, which were captured on Colony counter Scan1200. The image-based workflow was implemented with Python and OpenCV, and subdivided into three parts, including image pre-processing, image segmentation and object contour detection. Six image segmentation methods, including Chan-Vese, Iterative threshold, K-Mean, Mean, OSTU, and Watershed, differed in the running time, noise sensitivity and accuracy. The image-based estimates and measured values for leaf morphological traits had a strong correlation coefficient (r2 > 0.9736), and their residual errors followed a Gaussian distribution with a mean of almost zero. Iterative threshold, K-Mean, OSTU, and Watershed overperformed the other two methods in terms of efficiency and accuracy. This study highlights the high-quality and high-throughput of autonomous image-based phenotyping and offers a guiding clue for the practical use of suitable image-based technologies in biological and ecological research.

Funder

‘Fourteen Five-Year’ National Science and Technology Support Program

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3