Estimating Surface and Groundwater Irrigation Potential under Different Conservation Agricultural Practices and Irrigation Systems in the Ethiopian Highlands

Author:

Yimam Abdu Y.,Assefa Tewodros T.ORCID,Sishu Feleke K.,Tilahun Seifu A.ORCID,Reyes Manuel R.,Prasad P.V. VaraORCID

Abstract

This study was conducted at the Dangishta watershed in the Ethiopian highlands to evaluate irrigation potential from surface and groundwater sources under different farming and water application systems. Daily streamflow and the groundwater table were monitored from 2015 to 2017. Shallow groundwater recharge was estimated using the water table fluctuation method. Automated baseflow separation techniques were used to determine the amount of runoff and baseflow from the total streamflow records. The potential of groundwater and runoff to sustain dry season irrigation (i.e., low flow) was evaluated considering two tillage systems (i.e., conservation agriculture, CA; and conventional tillage, CT), and water application (i.e., drip and overhead) systems for major irrigated crops (i.e., onion, garlic, cabbage, and pepper) grown in the Dangishta watershed. We found that the annual groundwater recharge varied from 320 to 358 mm during the study period, which was about 17% to 22% of the annual rainfall. The annual surface runoff depth ranged from 192 to 268 mm from 2015 to 2017. The results reveal that the maximum seasonal irrigable land from groundwater recharge was observed under CA with drip irrigation (i.e., 2251 and 2992 ha from groundwater recharge and surface runoff, respectively). By comparison, in the CT practice with overhead irrigation, the lowest seasonal irrigable land was observed (i.e., 1746 and 2121 ha from groundwater and surface runoff, respectively). From the low flow analysis, about 199 and 173 ha of one season’s irrigable land could be irrigated using the CA and CT systems, respectively, both with drip irrigation. Similarly, two-season overhead irrigation potential from low flow under CA and CT was found to be about 87 and 76 ha, respectively. The dry season irrigable land using low flow could be increased from 9% to 16% using the CA system for the various vegetables, whereas drip irrigation could increase the irrigable land potential by 56% compared to overhead irrigation. The combined use of groundwater recharge and runoff could sustain up to 94% of the dry season low flow irrigation through the combination of the CA system and drip irrigation. Decision makers must consider the introduction of feasible and affordable technologies to make use of groundwater and direct runoff, to maximize the potential of dry season production through efficient and appropriate CA and water management practices.

Funder

Kansas State University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3