Comparison on Hysteresis Loops and Dislocation Configurations in Fatigued Face-Centered Cubic Single Crystals

Author:

Xing Zhibin1,Kong Lingwei1,Pang Lei1,Liu Xu1,Ma Kunyang1,Wu Wenbo1,Li Peng1

Affiliation:

1. Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Abstract

The aggregation and evolution of dislocations form different configurations, which are the preferred locations for fatigue crack initiation. To analyze the spatial distribution of the same dislocation configuration and the resulting configuration morphologies on different observation planes, several typical hysteresis loops and dislocation configurations in fatigued face-centered cubic single crystals with various orientations were compared. The crystal orientations of these specimens were determined by the electron back-scattering diffraction technique in a Cambridge S360 Scanning Electron Microscope. It is well known that dislocation ladder and wall structures, as well as patch and vein structures, are distributed on their respective observation planes, (12¯1) and (111). These correspond to the point defect direction and line defect direction of dislocations, respectively. Therefore, the wall structures on the (12¯1) and (111) planes consist of point defects and line defects, which can be defined as point walls and line walls, respectively. Furthermore, the walls on the (12¯1) plane consist of Persistent Slip Band ladders connected with each other, corresponding to the formation of deformation bands. The evolution of dislocation patterns follows a process from patch to ladder and from vein to wall. The formation of labyrinths and dislocation cells originates from the activation of different secondary slip systems. In one word, it can help us better understand the physical nature of metal fatigue and failure by studying the distribution and evolution of different configurations.

Funder

National Natural Science Foundation of China

100 Talents Plan of Hebei Province

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3