Material Strength Optimization of Dissimilar MIG Welding between Carbon and Stainless Steels

Author:

Van Huong Hoang1,Nguyen Thanh Tan1,Nguyen Van-Thuc1,Nguyen Van Thanh Tien2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 71307, Vietnam

2. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 70000, Vietnam

Abstract

This study examines the effects of stick-out, welding current, welding speed, and voltage on the mechanical characteristics and microstructure of MIG welding on SUS 304 stainless steel and S20C steel. The Taguchi method was used to maximize the experiment’s outcomes. Fine columnar dendrites formed at fusion sites, and δ-ferrite phases with dark lines and shapes accumulated between the fusion line and the austenite phases. A welding current of 110 A, voltage of 15 V, welding speed of 500 mm/min, and stick-out of 12 mm were the optimal settings for the ultimate tensile strength (UTS). The UTS value confirmation was 469.4 MPa, which agrees with the estimated value determined using the Taguchi technique. The tensile test revealed that welding current had a far greater impact on mechanical qualities than welding voltage, speed, and stick-out distance. The ideal welding parameters for flexural strength were as follows: stick-out of 12 mm, arc voltage of 15 V, welding speed of 450 mm/min, and welding current of 110 amp. The Taguchi method is useful, as evidenced by the validation of the flexure strength of 1937.45 MPa, which is much greater than the other samples. The impact of the thermal annealing process on the mechanical characteristics of the dissimilar weld joints could be the subject of future research. The investigation results may offer more insightful information about the dissimilar welding field.

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3