Joint Reconfiguration after Failure for Performing Emblematic Gestures in Humanoid Receptionist Robot

Author:

Jutharee Wisanu1,Kaewkamnerdpong Boonserm2ORCID,Maneewarn Thavida134ORCID

Affiliation:

1. Institute of Field Robotics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

2. Biological Engineering Program, Human Factors Engineering Research Group, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

3. Yannix Co., Ltd., Bangkok 10150, Thailand

4. Raina Robotech Co., Ltd., Bangkok 10150, Thailand

Abstract

This study proposed a strategy for a quick fault recovery response when an actuator failure problem occurred while a humanoid robot with 7-DOF anthropomorphic arms was performing a task with upper body motion. The objective of this study was to develop an algorithm for joint reconfiguration of the receptionist robot called Namo so that the robot can still perform a set of emblematic gestures if an actuator fails or is damaged. We proposed a gesture similarity measurement to be used as an objective function and used bio-inspired artificial intelligence methods, including a genetic algorithm, a bacteria foraging optimization algorithm, and an artificial bee colony, to determine good solutions for joint reconfiguration. When an actuator fails, the failed joint will be locked at the average angle calculated from all emblematic gestures. We used grid search to determine suitable parameter sets for each method before making a comparison of their performance. The results showed that bio-inspired artificial intelligence methods could successfully suggest reconfigured gestures after joint motor failure within 1 s. After 100 repetitions, BFOA and ABC returned the best-reconfigured gestures; there was no statistical difference. However, ABC yielded more reliable reconfigured gestures; there was significantly less interquartile range among the results than BFOA. The joint reconfiguration method was demonstrated for all possible joint failure conditions. The results showed that the proposed method could determine good reconfigured gestures under given time constraints; hence, it could be used for joint failure recovery in real applications.

Funder

King Mongkut’s University of Technology Thonburi, Thailand

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3