Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic

Author:

Bianchini ,Solari ,Soldato ,Raspini ,Montalti ,Ciampalini ,Casagli

Abstract

This study aimed at evaluating and mapping Ground Subsidence Susceptibility (GSS) in the Grosseto plain (Tuscany Region, Italy) by exploiting multi-temporal satellite InSAR data and by applying two parallel approaches; a bivariate statistical analysis (Frequency Ratio) and a mathematical probabilistic model (Fuzzy Logic operator). The Grosseto plain experienced subsidence and sinkholes due to natural causes in the past and it is still suffering slow-moving ground lowering. Five conditioning subsidence-related factors were selected and managed in a GIS environment through an overlay pixel-by-pixel analysis. Firstly, multi-temporal ground subsidence inventory maps were prepared in the study area by starting from two inventories referred to distinct temporal intervals (2003–2009 and 2014–2019) derived from Persistent Scatterers Interferometry (PSI) data of ENVISAT and SENTINEL-1 satellites. Then, the susceptibility modelling was performed through the Frequency Ratio (FR) and Fuzzy Logic (FL) approaches. These analyses led to slightly different scenarios which were compared and discussed. Results show that flat areas on alluvial and colluvial deposits with thick sedimentary cover (higher than 20 m) on the bedrock in the central and eastern sectors of the plain are the most susceptible to land subsidence. The obtained FR- and FL-based GSS maps were finally validated with a ROC (Receiver Operating Characteristic) analysis, in order to estimate the overall performance of the models. The AUC (Area Under Curve) values of ROC analysis of the FR model were higher than the ones of FL model, suggesting that the former is a better and more appropriate predictor for subsidence susceptibility analysis in the study area. In conclusion, GSS maps provided a qualitative overview of the subsidence scenarios and may be helpful to predict and preliminarily identify high-risk areas for environmental local authorities and decision makers in charge of land use planning in the study area. Finally, the presented methodologies to derive GSS maps are easily reproducible and could also be applied and tested in other test sites worldwide, in order to check the modeling performance in different environmental settings.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3