Extracting Raft Aquaculture Areas from Remote Sensing Images via an Improved U-Net with a PSE Structure

Author:

Cui Binge,Fei Dong,Shao Guanghui,Lu Yan,Chu Jialan

Abstract

Remote sensing has become a primary technology for monitoring raft aquaculture products. However, due to the complexity of the marine aquaculture environment, the boundaries of the raft aquaculture areas in remote sensing images are often blurred, which will result in ‘adhesion’ phenomenon in the raft aquaculture areas extraction. The fully convolutional network (FCN) based methods have made great progress in the field of remote sensing in recent years. In this paper, we proposed an FCN-based end-to-end raft aquaculture areas extraction model (which is called UPS-Net) to overcome the ‘adhesion’ phenomenon. The UPS-Net contains an improved U-Net and a PSE structure. The improved U-Net can simultaneously capture boundary and contextual information of raft aquaculture areas from remote sensing images. The PSE structure can adaptively fuse the boundary and contextual information to reduce the ‘adhesion’ phenomenon. We selected laver raft aquaculture areas in eastern Lianyungang in China as the research region to verify the effectiveness of our model. The experimental results show that compared with several state-of-the-art models, the proposed UPS-Net model performs better at extracting raft aquaculture areas and can significantly reduce the ‘adhesion’ phenomenon.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3