Refugee Camp Monitoring and Environmental Change Assessment of Kutupalong, Bangladesh, Based on Radar Imagery of Sentinel-1 and ALOS-2

Author:

Braun AndreasORCID,Fakhri FalahORCID,Hochschild Volker

Abstract

Approximately one million refugees of the Rohingya minority population in Myanmar crossed the border to Bangladesh on 25 August 2017, seeking shelter from systematic oppression and persecution. This led to a dramatic expansion of the Kutupalong refugee camp within a couple of months and a decrease of vegetation in the surrounding forests. As many humanitarian organizations demand frameworks for camp monitoring and environmental impact analysis, this study suggests a workflow based on spaceborne radar imagery to measure the expansion of settlements and the decrease of forests. Eleven image pairs of Sentinel-1 and ALOS-2, as well as a digital elevation model, were used for a supervised land cover classification. These were trained on automatically-derived reference areas retrieved from multispectral images to reduce required user input and increase transferability. Results show an overall decrease of vegetation of 1500 hectares, of which 20% were used to expand the camp and 80% were deforested, which matches findings from other studies of this case. The time-series analysis reduced the impact of seasonal variations on the results, and accuracies between 88% and 95% were achieved. The most important input variables for the classification were vegetation indices based on synthetic aperture radar (SAR) backscatter intensity, but topographic parameters also played a role.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference140 articles.

1. Humanitarian emergencies: Causes, traits and impacts as observed by remote sensing;Lang;Remote Sens. Handb.,2015

2. Deriving land use and canopy cover factor from remote sensing and field data in inaccessible mountainous terrain for use in soil erosion modelling;Suriyaprasit;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2008

3. Canopy-cover thematic-map generation for Military Map products using remote sensing data in inaccessible areas

4. Rapid large-area mapping of ice flow using Landsat 8

5. Time-Sensitive Remote Sensing Systems for Post-Hazard Damage Assessment;Stow,2015

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3