Development of an Operational Algorithm for Automated Deforestation Mapping via the Bayesian Integration of Long-Term Optical and Microwave Satellite Data

Author:

Mizuochi Hiroki,Hayashi Masato,Tadono TakeoORCID

Abstract

The frequent fine-scale monitoring of deforestation using satellite sensors is important for the sustainable management of forests. Traditional optical satellite sensors suffer from cloud interruption, particularly in tropical regions, and recent active microwave sensors (i.e., synthetic aperture radar) demonstrate the difficulty in data interpretation owing to their inherent sensor noise and complicated backscatter features of forests. Although the sensor integration of optical and microwave sensors is of compelling research interest, particularly in the conduct of deforestation monitoring, this topic has not been widely studied. In this paper, we introduce an operational algorithm for automated deforestation mapping using long-term optical and L-band SAR data, including a simple time-series analysis of Landsat stacks and a multilayered neural network with Advanced Spaceborne Thermal Emission and Reflection Radiometer and Phased Array-type L-band Synthetic Aperture Radar-2, followed by sensor integration based on the Bayesian Updating of Land-Cover. We applied the algorithm over a deciduous tropical forest in Cambodia in 2003–2018 for validation, and the algorithm demonstrated better accuracy than existing approaches, which only depend on optical data or SAR data. Owing to the cloud penetration ability of SAR, observation gaps of optical data under cloudy conditions were filled, resulting in a prompter detection of deforestation even in the tropical rainy season. We also investigated the effect of posterior probability constraints in the Bayesian approach. The land-cover maps (forest/deforestation) created by the well-tuned Bayesian approach achieved 94.0% ± 4.5%, 80.0% ± 10.1%, and 96.4% ± 1.9% for the user’s accuracy, producer’s accuracy, and overall accuracy, respectively. In the future, small-scale commission errors in the resultant maps should be improved by using more sophisticated machine-learning approaches and considering the reforestation effects in the algorithm. The application of the algorithm to other landscapes with other sensor combinations is also desirable.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3