Development of a Parameterized Model to Estimate Microwave Radiation Response Depth of Frozen Soil

Author:

Zhang ,Jiang ,Zhao ,Chai ,Li ,Pan

Abstract

The sensing depth of passive microwave remote sensing is a significant factor in quantitative frozen soil studies. In this paper, a microwave radiation response depth (MRRD) was proposed to describe the source of the main signals of passive microwave remote sensing. The main goal of this research was to develop a simple and accurate parameterized model for estimating the MRRD of frozen soil. A theoretical model was introduced first to describe the emission characteristics of a three-layer case, which incorporates multiple reflections at the two boundaries. Based on radiative transfer theory, the total emission of the three layers was calculated. A sensitivity analysis was then performed to demonstrate the effects of soil properties and frequency on the MRRD based on a simulation database comprising a wide range of soil characteristics and frequencies. Sensitivity analysis indicated that soil temperature, soil texture, and frequencies are three of the primary variables affecting MRRD, and a definite empirical relationship existed between the three parameters and the MRRD. Thus, a parameterized model for estimating MRRD was developed based on the sensitivity analysis results. A controlled field experiment using a truck-mounted multi-frequency microwave radiometer (TMMR) was designed and performed to validate the emission model of the soil freeze–thaw cycle and the parameterized model of MRRD developed in this work. The results indicated that the developed parameterized model offers a relatively accurate and simple way of estimating the MRRD. The total root mean square error (RMSE) between the calculated and measured MRRD of frozen loam soil was approximately 0.5 cm for the TMMR’s four frequencies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3