An Efficient Defocus Blur Segmentation Scheme Based on Hybrid LTP and PCNN

Author:

Basar SadiaORCID,Waheed AbdulORCID,Ali MushtaqORCID,Zahid SaleemORCID,Zareei MahdiORCID,Biswal Rajesh RoshanORCID

Abstract

The defocus or motion effect in images is one of the main reasons for the blurry regions in digital images. It can affect the image artifacts up to some extent. However, there is a need for automatic defocus segmentation to separate blurred and sharp regions to extract the information about defocus-blur objects in some specific areas, for example, scene enhancement and object detection or recognition in defocus-blur images. The existence of defocus-blur segmentation algorithms is less prominent in noise and also costly for designing metric maps of local clarity. In this research, the authors propose a novel and robust defocus-blur segmentation scheme consisting of a Local Ternary Pattern (LTP) measured alongside Pulse Coupled Neural Network (PCNN) technique. The proposed scheme segments the blur region from blurred fragments in the image scene to resolve the limitations mentioned above of the existing defocus segmentation methods. It is noticed that the extracted fusion of upper and lower patterns of proposed sharpness-measure yields more noticeable results in terms of regions and edges compared to referenced algorithms. Besides, the suggested parameters in the proposed descriptor can be flexible to modify for performing numerous settings. To test the proposed scheme’s effectiveness, it is experimentally compared with eight referenced techniques along with a defocus-blur dataset of 1000 semi blurred images of numerous categories. The model adopted various evaluation metrics comprised of Precision, recall, and F1-Score, which improved the efficiency and accuracy of the proposed scheme. Moreover, the proposed scheme used some other flavors of evaluation parameters, e.g., Accuracy, Matthews Correlation-Coefficient (MCC), Dice-Similarity-Coefficient (DSC), and Specificity for ensuring provable evaluation results. Furthermore, the fuzzy-logic-based ranking approach of Evaluation Based on Distance from Average Solution (EDAS) module is also observed in the promising integrity analysis of the defocus blur segmentation and also in minimizing the time complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3