The Effects of Atrazine, Diuron, Fluazifop-P-butyl, Haloxyfop-P-methyl, and Pendimethalin on Soil Microbial Activity and Diversity

Author:

Dennis Paul G.ORCID,Kukulies Tegan,Forstner Christian,Plisson FabienORCID,Eaglesham Geoff,Pattison Anthony B.ORCID

Abstract

Understanding the impacts of herbicides on soil microbial communities is important, as these organisms mediate a wide range of ecosystem services. Here, we investigated whether the diversity and function of soil microbial communities were significantly influenced by one-off applications of atrazine, diuron, fluazifop-P-butyl, haloxyfop-P-methyl and pendimethalin as pure compounds at their recommended doses over multiple time points (1, 3, 7, 14, 30 and 60 days). Phylogenetic marker gene sequencing revealed that none of the herbicides influenced the numbers of bacterial and archaeal taxa or the evenness of their abundances. Similarly, none of the herbicides influenced the composition of bacterial and archaeal communities, except for diuron, fluazifop-P-methyl and pendimethalin, which were associated with larger relative abundances of a small number of OTUs on day 30 only. Functionally, none of the herbicides significantly influenced fluorescein diacetate hydrolysis (FDA) and beta-glucosidase activities or the induced respiratory responses of soil microbial communities to a range of substrates. These data indicate that the active herbicide ingredients tested may have minimal non-target effects when applied once at their recommended dose. Given their frequent use, it is important to next consider whether these herbicides have more pronounced effects at higher doses and application frequencies.

Funder

Horticulture Innovation Australia Limited

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of sulcotrione and terbuthylazine on biological characteristics of soil;Applied Soil Ecology;2024-03

2. Efficient Degradation of Pendimethalin via Photo-Catalytic Ozonation Over Ni/Mg@TiO2 Nanocomposites;Proceedings of the International Conference on Metallurgical Engineering and Centenary Celebration;2023-10-15

3. Risk Assessment of Sulfonylurea Herbicides Based on a Complex Bioindicator;Agriculture;2023-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3