Diversity of Microbial Communities in Trade Wastes—Implications for Treatments and Operations

Author:

Elliott Jake A. K.12ORCID,Krohn Christian12,Ball Andrew S.12ORCID

Affiliation:

1. ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia

2. School of Science, RMIT University, Bundoora, VIC 3083, Australia

Abstract

Industrial wastewaters display a complex and diverse range of physicochemical properties that are measured, studied, and treated by businesses and water service providers. Less frequently measured are the microbial communities in these wastes, despite possible implications for health, equipment maintenance, and the environment. This study aimed to assess the microbial communities of eighteen raw and discharge-ready wastewaters across eleven industrial sites to compare the microbial compositions of these wastewaters across different industry sectors, on-site treatment levels, and other wastewater components. The potential for variance in the biomethane yield, depending on microbial communities, was also measured. Using targeted sequencing, a unique taxonomy was identified, including genera linked to animals (Acetitomaculum, Lactobacillus, NK4A214, Prevotella, and Shuttleworthia), cooling water (Bosea, Legionella, Methyloversatilis, and Reyranella), and extreme conditions (Alkalibacillus, Geobacillus, Halorubrum, and Pyrobaculum). However, the compositions of the microbial communities were not found to be directly correlated to industry sector or on-site treatment levels, nor were they found to have a direct effect on the biomethane potential. However, the presence of certain individual taxa is linked to the methane yield and treatment status and may be explained in the context of physicochemical properties while serving as potential markers for identifying, improving, or developing on-site processes.

Funder

Greater Western Water

Australian Government Research Training Program Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3