Breaking the Mold: Towards Rapid and Cost-Effective Microbial Contamination Detection in Paints and Cosmetics Using ATP-Bioluminescence

Author:

Mutschlechner Mira1ORCID,Chisté Daniela1,Schöbel Harald1ORCID

Affiliation:

1. Department of Biotechnology & Food Engineering, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria

Abstract

Traditional culture-based methods, though a “gold standard” for bacterial detection in various industrial sectors, do often not fulfill today’s high requirements regarding rapidity, on-site applicability, and cost-efficiency both during operation and evaluation. Here, the feasibility of using an adenosine triphosphate (ATP)-based assay for determining microbial contaminations in paints and cosmetics was investigated and compared with standard plate count techniques and dipslides. Therefore, we initially determined the level of sensitivity and assessed the accuracy and concordance among the different methods via spiking tests using a mix of frequently abundant bacterial species to simulate microbial contamination. Bioluminescence intensity was linearly proportional to log colony counts over five orders of magnitude (R2 = 0.99), indicating a high level of sensitivity. Overall, the accuracy varied depending on the test specimen, most probably due to matrix-related quenching effects. Although the degree of conformity was consistently higher at target concentrations ≥ 105 CFU·mL−1, microbial contaminations were detectable down to 103 CFU·mL−1, thus meeting the high requirements of various industries. ATP-based results tended to be within an order of magnitude lower than the reference. However, bearing that in mind, the developed assay serves as a rapid, real-time alternative for routine quality control and hygiene monitoring.

Funder

Austrian Research Promotion Agency FFG

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3