Sugar-Induced Cell Death in the Yeast S. cerevisiae Is Accompanied by the Release of Octanoic Acid, Which Does Not Originate from the Fatty Acid Synthesis Type II Mitochondrial System

Author:

Avtukh Alexander1,Baskunov Boris1,Keshelava Varlam2,Valiakhmetov Airat1

Affiliation:

1. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia

2. Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia

Abstract

Incubation of the yeast S. cerevisiae with glucose, in the absence of other nutrients, leads to Sugar-Induced Cell Death (SICD), accompanied by the accumulation of Reactive Oxygen Species (ROS). Yeast acidifies the environment during glucose metabolism not only as a result of the activity of the H+-ATPase of the plasma membrane but also due to the release of carboxylic acids. Acetic acid is known to induce apoptosis in growing yeast. We analyzed the composition of the incubation medium and found octanoic acid (OA) but no other carboxylic acids. Its concentration (0.675 µM) was significantly lower than the one at which OA had a toxic effect on the cell. However, the theoretically calculated concentration of OA inside the cell (about 200 μM) was found to be high enough to lead to cell necrosis. To test the hypothesis that OA might cause SICD, we used a ΔACP1 strain incapable of synthesizing OA in the yeast mitochondrial Fatty Acid Synthesis type II system (FAS-II). The deletion of the ACP1 gene did not affect the OA content in the medium. But, on the other hand, OA is a precursor of lipoic acid, which has antioxidant properties. However, strains with deleted genes for lipoic acid biosynthesis from OA (ΔPPT2, ΔLIP2, ΔLIP5, and ΔSGV3) showed no change in ROS and SICD levels. Thus, lipoic acid synthesized in FAS-II does not protect cells from ROS accumulated during SICD. We conclude that OA synthesized in the mitochondrial FAS-II system and its derivative lipoic acid are not involved in SICD in yeast S. cerevisiae.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3