Affiliation:
1. Division of Applied Microbiology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Abstract
The amyE gene encoding α-amylase from Bacillus subtilis 168 was fused to several genes, the products of which are membrane proteins to express AmyE extracellularly. Genes of CapA, a subunit of the capsular poly-γ-glutamate synthetase of Bacillus subtilis subsp. natto; YiaTR232, the first 232 residues of YiaT, an outer membrane protein of Escherichia coli K-12; and PgsA, cytidine 5′-diphosphate-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase of B. subtilis subsp. natto, were used. The Escherichia coli strain harboring the plasmid carrying the pgsA-amyE fusion expressed a very high level of amylase not only on the extracellular surface of the cells but also in the medium and the intracellular space and solubilized steamed rice in two days. The N-terminal amino acid sequence of the amylase purified from the culture medium (Ser-Ala-Glu-Thr-Ala) indicated that it was cleaved at the signal peptide cleavage site of AmyE. The strain SH2204, transformed with pKN11 carrying speA (arginine decarboxylase gene), speB (agmatinase gene) and argAATG Y19C (N-acetylglutamate synthase gene) and pMAN63 carrying pgsA-amyE produced 1.2 mM putrescine from 5 mM arginine by adding 0.5 mM IPTG in eight days. Discarding steamed rice is not only a food loss, but also a waste of renewable, biogenerated resources due to the burning of it with petroleum, increasing carbon dioxide in the atmosphere. The E. coli strain developed in this study can help solve this problem because it can produce an important chemical using steamed rice as the sole carbon and energy source.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献