Removal of Nonylphenol Polyethylene Glycol (NPEG) with Au-TiO2 Catalysts: Kinetic and Initial Transformation Path

Author:

Aguilar ClaudiaORCID,Garcia MayraORCID,Montalvo CarlosORCID,Anguebes FranciscoORCID,Moctezuma EdgarORCID,Abatal MohamedORCID,Figueroa SandraORCID

Abstract

The purpose of this study was to evaluate the efficiency of the Au-TiO2 catalyst in the degradation of nonylphenol polyethylene glycol (NPEG). In the first part of the study, the catalyst was synthesized and characterized. Initially, the catalyst (TiO2 Degussa P-25) was doped with gold precursor salts (HAuCl4) at different concentrations (5, 10, and 15%) and the photodeposition method with UV light. It was determined by diffuse reflectance (DF) and scanning electron microscopy (SEM) that the photodeposition method was effective for the inclusion of gold particles on the surface. The catalyst band gap showed a reduction to 2.9 e.v (compared to TiO2 Degussa P-25), and it was observed that the gold-doped catalyst showed absorption in the visible light range 500 to 600 nm. The percentage of deposited gold was determined by energy dispersive spectroscopy (EDS). In the second part of the study, various NPEG degradation experiments were performed; with the catalyst that showed the best conversion percentages of NPEG, the experimental data were analyzed using UV-Vis spectrophotometry and TOC (total organic carbon). With these results, a carbon-based mass balance and reaction kinetics were generated using the Langmuir–Hinshelwood (L–H) heterogeneous catalysis model. For the estimation of the kinetic constants, the non-linear regression of the Levenger–Marquardt algorithm was used. With these results, kinetic models of the degradation of the molecule and the generation and consumption of organic intermediate products (OIPs) were generated.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3